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!

ABSTRACT

The multiple-loop self-oscillating adaptive (SOAL) system
is presented as a natural, logical means of overcoming a serious
limitation of the single-loop self-oscillating system (SOAS).
Both structures have the property of zero sensitivity to plant
high-frequency gain uncertainty p = kmax/kmin , the factor
which is generally responsible for large 'cost of feedback'. It
is however necessary to design these systems such that the response
is essentially quasilinear to the desired class of command and
disturbance signals. In the SOAS, p rea- as a significant
factor in the quasilinear requirements whici: may, depending on
the numbers involved, completely vitiate its banishment as an

uncertainty factor. The development of a quantitative design

theory for the SOAS pinpoints the two-loop SOAL extension needed
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to overcome this SOAS limitation, and the development of a
similar SOAL quantitative design theory. In the latter, p
disappears from bot;::daptive and quasilinear conditions,
but reappears as a factor in the rate of adaptation of the
system. It may be banished from here too, by means of a

three-loop self-oscillating system (SOANL), for which

the SOAL design theory is applicable with minor extensions.
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A SYNTHESIS THEORY FOR MULTIPLE-LOOP OSCILLATING

ADAPTIVE SYSTEMS

I. INTRODUCTION

It is well known that high frequency dither can linear-
ize the response of a certain class of nonlinear elements to
slower and smaller amplitude signals [1~3]. This phenome-
non is explicable by multiple-input describing function
theory [4-7], and has recently received more abstract ahd
rigorous.treatment [8]. The adaptive property of such dith-

er was later recognized [9, 10 and especially 11]. Struct-

ures similar to dithered systems were among those promoted
in the USAF sponsored competition for adaptive flight con-
trol systems [12, ;3]. Some versions were among the suc-
cessful ones, used for example in the X-15, X-20 involving
fantastic parameter uncertainty factors of more than one
thousand [14-16]. These systems contain strongly nonlinear
elements but their system properties have significant linear
aspects. Thus, aside from their inherent value, they.are
the linear and nonlinear
of interest as a transition bctweenhgdaptation philoscphics.
A variety of dithered feedback systems exist. In most,

the amplitude of the dither is used as a parameter identi-

fier, but in some the phase is also used. Single and two-
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loop, self-oscillating and externally excited systems have
been described [17-22]. In all, both the quasilinear and
the adaptive aspects are essential features which must be
properly designed into the system. The quasilinear aspect
has received thorough quantitative treatment [24], but the
adaptive aspect to a much lesser extent. Since parameter
uncertainty is the motivation for these systems, surely the
aétual extent of uncertainty and the desired system response
tolerances, ought to appear as significant design parame-
ters. It is reasonable to expect that an optimum design to
handle an uncertainty factor of say 1000, should be signi-
ficantly different from one for an uncertainty factor of
100. But this is not so in most of the literature. There
have so far appeared quantitative design theories only for
the single-loop self-oscillating (SOAS) and the sinéle—loop
externally excited (EEAS) adaptive systems [25, 26]. This
paper presents suéh a design theory for two versions of the
two-loop self-oscillating system (SOAL and SOANL). The
SOAL structure used here is not new, although it was inde-
pendently derived in a straightforward logical manner (as
will be seen), in the process of trying‘to overcome SOAS
limitations. The quantitative design theory is new and
reveals the the superiority of the SOAL structure over oth-
er two-loop versions. The quasilinear feastures common to
all dithered systems are first reviewed.

Review of Quasilinear Theory [24]

Let the input to the nonlinearity N (Fig. 1) be i




=g

x = A sin ot + xg(t) 8 x (E) + x(E) (1a,b)

Let be ﬁhé bandwidth of X (jw) = ‘zaf(t)], s = jw and

Vg
a, B specific suitable numbers (o = B = 3 will be used
in subsequent numerical examples). For a certain class of
nonlinearities, if

sup|x-(t)]| < L ‘o . (2a,b)

t f Sla- 2 o fF LB ?
then y, the output of N may be written with good accuracy

(depending on the values of a, B [2u4])

- . h =M _ N
y = NA sin w_t + fof(t), No = x Nf = 7; (3a-c)

with M a real parameter of N. The ideal relay with +B
saturating levels will be always used henceforth for illus-
trative purposes, for which M = %? . Thus, N presents
the gain N, to the faster and larger ‘oscillating component
x, and N = No/2 to the slower and smaller forced com-
ponent x. of (la,b). Accordingly in Fig. 1 the forced
component system response functions to command and disturb-

ance inputs are

A C L A C

= f i )
Tf(S) e 3 —631—-_'_—1:}- ’ Td =i 1+Lf 5 (4a,b,c)
dz D i # Lf

with forced and oscillating component loop transfer func-
tions

L. = GIGZNIP = G,G,N_KP s Lo = GleNoP = ?Lf 3

f 172 f " h

(5a,b,c)

i — “.‘
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In the above P = K Ph is the constrained plant and it
is assumed in the meantime that the only uncertainty is in

the high frequency plant gain factor K , defined by

"n >

lim ELEl
s> s

(6)

o

where p 1is the excess of plant poles over zeros.

ITI. REVIEW OF SOAS ADAPTIVE THEORY

There is a logical and natural transition from the
SOAS to the two-loop SOAL, which renders the latter theory
quite transparent once the former is well understood. First,
note that if the excess of poles over zeros of Lo(s) of
(5b) is 2°3 , then from describing function theory and the
infinite gain of the ideal relay (or large enough gain for
other nonlinear element), there is a limit cycle at Wy s
defined by

: ek . : _ 4B 3 N
Arg Lo(on) = -m with ILO(JwO)I = nAl61G2 KPh(jwo)l— 1
(7a, b)

Since all elements of (7b) except K, A are fixed, K/A

must be a constant, giving zero sensitivity of Lf(jw) = Lo/2
to K uncertainty. Incidentally, the rigorous requirements
for excellent accuracy of the describing function [27] are
casily achieved in SOAS and SOAL design. Second, in any
practical system there must be a bound m on the tolerable
amplitude of the limit cycle at the system output, i.e. in

Fig. 1

_— —
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; _ uB
(on)l Fhe aEe IG2 Km

sup i% IG2 K P
K

Ph(jwo)l < m (8)

h ax

Third, the quasilinearity conditions (2a,b) compel
specification of the extreme command and disturbance signals
for thch quasilinearity is to be valid. It is found [25]
that these are the inputs giving maximum forced component

plant output IZe(jmo)l at w, in Fig. 1, and denoted by

Z = Re T

- of (4) for the extreme command input, and

f
= —De T

Z of (4) for the extreme disturbance input.

ed dz

The corresponding extreme input to N 1is denoted by Xei

. _ 2B
with Zei (s) = =Y G2 KPh Xei

r(t) never or rarelyroccur simultaneously then the larger

(s) in Fig. 1. If d(t),

t each w must be used. If the two extremes do occur

together, then their sum must be used. Fourth, a good

optimization criterion is the minimization of w, of £75;

because the bandwidth of L. is thereby minimized [28].

In the SO0AS, conditions (2a,8) usually determine

. s _ 2B . -
(w ) s as follows. Write Ze(jw) = o5 G2KPhXe(Jw) =

®s’min "

2B s A :
“Kmin G2 Kmin Ph Xe(Jm) because A/K 1is invariant, as
previously noted following (7). Use the above to eliminate

BG,P, in (8), giving

e

2 Kmax A
W memp—— lée(jmo)|= Yllée(]mo)l (3)
min

(jw )
Amin v




B
The final important constpainﬁ is (2a) in which the worst
case 1is whenthz{-z x, and A=A . . It is shown in [25]
that the besthcan be done results in (2a) being equivalent
to
X

e ;
— (jw)
Amin

<

R w < w - (10)

The importance of conditions (8, 10) is 1llustrated by the

following desing example.

Design Example. P = g , K €[1,100] . The extreme command
input Re(S) = gé- and the disturbancesare thought to be

negligibly small. The maximum tolerable oscillation

amplitude m = 1 . The desired system response function is

Tf(s) = 20'01 o(s) s Wwhere ®(s) contains the far-off
s"+0.1s+0.01

poles and zeros which may be added, if worthwhile.

Design. In the above ¥y = 2 Kmax/m Kmin = 200,
R s Re T, and the resulting ,Yllzer(jw)l is

sketched in Fig. 2 for &(s) =1 as is 1/a v (o = 3)

of (10), as if testing any w if it may be used for w, .

Conditions (9,10) dictate that (w ) is at the inter-

o’‘min

action of the two curves, with value 20 rps . Suppose

?(s) = z~l—;7 is acceptable. The new allzc(jw)l gives
s+l)

"

w 4.5 . Clearly, it is desirable to add as many

Oo_ .
min

far-off poles as tolerable. Condition (2b) is then satisfied
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by a large margin.

2K
It is seen that vy, = LoCr S decisively important
1L mK p
max
in determining (wo)min . It is interesting that the
uncertainty in K , expressed by Kmax , which was banished
min

from Lf , returns as a constraint which is very important

in determining (w )

. and with it, the bandwidth of L. .
o‘min f

If Yy is large enough, the resulting L¢ bandwidth
may be larger than that required by a linear time-invariant
feedback design satisfying the same quantitative specifica-

tions [28].

Limitations due to Disturbances

Disturbances impose a -serious limitation on the SOAS.

This is seen by asking: Given W - determined by Zer as

in the above example, for what class of disturbances D
in Fig. 1, is quasilinearity maintained? Consider then

: 5 : SO ; ) .
Ze(jmo) = Zde(jwo) = l+Lf De(jwo) = De(Jqo), because from

-0.5 . In the limiting case (from 9, 10)

(5b, 7b) Lf(jwo)

Y1246 Gu )| = v [P (Gwy) [#1/3w, , which determines the

tolerable D class. Thus in the above example if

B, = k/s , then set 200 kmax/wo = 1/3 wy » 8iving

kmax = 1/600 - a very small tolerable step disturbance -

the assumed negligible disturbance may not be ignorable

after all. If D_= it with o < Wy s then
(s+a)

e
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max * __1_ e b - 8 . ~
200 o e 3wo gives kmax £00 ° Any larger disturbanceg
o
violate quasilinearity condition and the response to them
becomes very sensitive to the relative phases of the

sinusoid and the disturbance input.

In the above, the problem of design for specific
disturbance attenuation was not even considered. Suppose
there are significant disturbances which must be attenuated.
Whatever disturbance attenuation design philosophy [28] is
used, 1t results in some extreme plant output Zde for the
extreme disturbance input D, - As in the above, it is
necessary that vy, IDe(jwo)I < 1/awo . 14 De(s) = k/s ,
there is no solution if Yik > 1/a . Hows er i1f the excess
of poles over zeros of De(s) > 2 , then there is always a

solution, but (w_ ) may then be exceedingly large. Thus,

o’min
in the above example, De = J/s2 gives YlJ/wg = l/3wo »
so (w ) . = 6000 J . A linear time-invariant design

might be far better in terms of loop-bandwith.

Completion of Design Example

If disturbance attenuation is of no concern, then the
design is basically complete, once Wy has been chosen [25].
For w < w, , ILo(jw)| should be chosen >1 of course,
but not necessarily very large, because Lf as such is not
needed for disturbance attenuation or sensitivity reduction.
It is desirable to have large |d Arg Lo(jw)/dwl at w_ ,

so that the value of wg is insensitive to changes in plant




e
dynamics. Such an Arg Lo(jw) is associated with fast
decrease of ILo(jw)I near w_ , which in itself is also
desirable. If disturbance attenuation is of concern then
Le = 0.5 Lo must be shaped to obtain the desired
disturbance attenuation, which must, as previously shown,

be compatible with the chosen W, - In fact, from the

previous discussion, womin due to quasilinearity
constraints is very likely much larger than that needed for
disturbance attenuation alone. As an example of design for
(compatible) disturbance attenuation suppose one wants it
(i.e, |Td(jw)| of ub) £o be < Bd(w) , a straight line
on a Bode plot (db vs log w) , with Bd(l) =-5db ,

Bd(-l) = -30db . It is given that this bound applies for

w < 1.2 . For all other w it is required that .

Le

—=—| £ 2.3db . See [28, 29 Sec. 10. 15] how such bounds
1+Lf

may arise. In any case, no matter what design approach is
used, disturbance attenuation is a matter of small enough
[T4¢(30)| vs o over a sufficiently large ® range.

Different techniques oniy give different Bd(w) for Td(jw).

Since iy T%E_ s, the Bd(w) generate bounds B(w) on
f
Lf(jm), shown in Fig. 3, which together with the previous

constraint of = 4.5 and Lf(jwo) = -0.5 (point

w ,
o min
A in Fig. 3), complete the specifications on Lf(jw)
In this case, Lf(jw) is easily shape® to satisfy the
B(w) and o = 4.5, as shown in Fig. 3, with

C(1.28)10%(s*+305+225)
Le(s) & sy

S(s246.4ls421.2) (s241554225)2
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Y

The prefilter G5 is obtained from

Tf(s)

Gy g = - S
[Lf/(l+Lf)] (1+10s+100s°) (1+s)

Z

Constraint (10) determines Gz(s) by use of X _ = = )
e
NszK Ph
Ne = = giving |.BG Go)| > T au Ze(jw)l for w < w
= ; S s
B 2 2Knin Ph(jm) e
with IZe| the larger of 'Zerl > |Zoq | » assuming

simultaneous occurrence of extreme r(t) and d(t) is

very rare. In this case, it is easily found that

12, G| > [24Gw)|  for w<w ,s0 Z =R, T is

used. A satisfactory choice is

76w (1410s)(s2+43.225421.2)

BG2 = :
2 2
(1+10s+100s°)(1+s)
Gl is found from Lf = %g GIGQK Ph . B can be chosen for convenie
in hardwareimplementation. The value B= 16w was here chosen.
Amin = 0.5 is known from knowledge of Lf, BG, » Gl’ KPy .

Motivation for the Two-Loop SOAL

It is seen from the above that the presence of

Kmax/Kmin

SQAS design, leading to (

in Y, of (9) is a very serious impediment in

)

W . unnecessari rge f
o min necessarilily large for

the adaptive and disturbance attenuation needs of the

system. Suppose Kmax/Kmin could be eliminated with

¥y = 2/m used instead of Yy in (9). Then, in the above

example in Fig. 2, the intersection of Y?IZPC(jm)I with

1/3w gives (mo)min = 1.3 , in place of U4.5rps, an
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improvement of 1.79 octaves. Note that constraint (lb) is
easily.satisfied even at this value of G, - But in
general there is some possibility that (1b) becomes

significant, in the SOAL design. For b, = k/s or

k/(s+oz)2 etc., tolerable kmax is exactly Kmax = 100
min
times the previous values. Thus, elimination of Kmax/Kmin

in Yy is highly desirable and the SQAL (Fig. 4a) is a

suitable structure for this purpose.

III. SOAL ADAPTIVE THEORY

In order to eliminate K /K .
max’ min

-from (8) and Kmin

from vy, in (9],
it is necessary to eliminate K
: max
from Z_, in the discussion leading to (9). Both are due
to K/A being invariant in (7b), which in turn gives the
system zero sensitivity to uncertainty in K . Hence,
Kmax/Kmin
is possible, if instead of K/A , BK in (7b) is made -

elimination with retention of zero K-sensitivity

invariant. But whereas A automatically tracks K such
that in steady-state K/A 1is invariant, B can be made

to do so only by means of a secondary loop. The function

of the latter is to track A and adjust B , to force A

to be constant in the steady-state. Since (7a) fixes 9

and (7b) compels BK/A to be fixed (inasmuch as

6,6, P (ju ) is fixedz)fixed A compels BK to be invariant.
This reasining leads directly to the self-oscillating

adaptive loop (SOAL) structure of Fig. ha.

_.—_____——-‘M
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SOAL Structure. .In Fig. 4a, a peak detector Amé is used to
measure the difference between the maximum and minimum
values of x =A sin w_ t + x:(t). This gives a fast and
accurate measurement of 2A, because (recall 2a, b) the
system is designed so that over the range of command and

disturbance inputs, Ixf(t)l is both small and slow

relative to A and Wy - (See later for comparison with
other methods). The measured Am is combaved with the
chosen reference value Ar and the difference Ae(t) =
processed by Y(s) , changes B so that in the steady-
state, Ae is very small or zero. The dynamics of the

secondary loop are next considered.

Dynamics of Secondary Loop

The technique [29] of the 'Fundamental Feedback Equation'
is used to derive the dynamies. 1In a linear time invariant
. system, letcﬂ be any variable chosen as an independent
system input, and C9’the output variable of interest. Let
ﬁa(s) be the traﬁsfer function of any system element such
that /g(s) =,e(s) d(s) . where/§ and /8 are any two
.system variable so related to 62. If the element 62' is
thus uniquely identified by the variables /g ana £,
then the relation between c9 and C}' » has the form

A Asrt . ()t _(s)
. 9’5:% = € .(8) 4 = o2 : (11)

T
o

The important feature of this 'fundamental feedback




1

. ' < 2 2
equation' for reference 6{_(5) , is that 1oi > tog tos 3

tcs(s) are completely independent of ﬁ{(s) and they are

calculated quite easily, as will be seen. Eq. (11) is there-

fore very useful if one wishes to focus attention on the
relation between Iba and é{. It is also very useful in
analysis [29] enabling a complex problem to be broken into

four simpler ones-so used here.

Let the independent input é% be a change in A and
the output (3 be the change in B . Let A{js) =y (s) ,
so Ls) and /5 (s) are as shown in Fg. h4a. The four
transmissions tij(s) are obtained as follows [29]. Cut
the system at points a, a' with Fig. 4b replacing the top
(éecondary loop) part of Fig. ta. The functions to; > tei
transmissions from 0? =AA to the variables & =4B >
/ﬁ= a . The functions tos 5 tcs are the transmissions
from 4& = a' regarded as anindependentinput,to the
variables 0 =AB , ,€'= a . One must calculate four
transfer functions instead of only one - but the cuts can
make the latter four much easier to find - ﬁroviding a wise
choice of'é{, has been made. The system input r(t) in

Fig. 4b need not be zero so long as it may be assumed it

dces not affect the limit cycle.

Accordingly, in Fig. Ub

toi = %3:0_ =0 tci =%| 48 = -Ame(s) being
=0

the transfer function of a peak - to - peak detector, which

are the

R g
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requires a half - period, giving

= -.5sT
Loy T 3

.

The function tsc = — I
/8 J =0

Obviously one part is —Ame(s) . The other is the effect

_19’| g
T=2'ﬂ/wo 3 tos—z ‘9:0-—1.

consists of two parts.

of AB on the limit cycle amplitude at x , precisely as
in the SQ0AS. The steady-state value is obtained from (7b)
giving %%—= % |G1G2KPh(jwo)|: A/B . The dynamics of the
change AA due to AB was found experimentally to be
L./p
; .o - T . ,
well approximated’ by TTTE;7B) with p Dbetween 2 and 3

for different conditions. The worst case p = 3 is used

here, giving the 'secondary loop transmission'

L./3
n 5 ~.5sT f
= —%lGlGQKPh(ij)I e —  (12)

Ls(s)‘= -t
1+Lf/3

cSs

The stability and speed of this B adjusting loop is
primarily determined by Ls(s) , whose maximum !crossover

A
: ; e ’
frequency W, (where |Ls(jwc)|— 1) is < wo/3
approximately, because g contributes -60° phase
w
at F%- and allowing at least 30° phase margin, therfe is

left -90° needed for ldL (jw)/dw |~ -6db per octave
at w, . It is interesting to see the reappearance of
the K uncertainty in LS , after it was banished from
the primary loop and quasilinearity conditions. The K

uncertainty must be considered in the shapingof L_ .

s
at K = K

1 N W = w v A
Since w o/3 at K K 3 & i nin

C max max
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can be quite small with resulting much slower adjustment of
B to K changes near K = Kmin . The function y(s) is

available for shaping »f Ls(s) .

From the above it is easy to find the effect of changes

in K on B . The independent input 59 is now a change in

K . Using the same la;(s) s the result is

&b B B 4

AK £ Fen Mantge P iBae L

’

SOAL Design Equations

These follow easily from those of the SOAS. In (8) BK

is constant, so Kmax is replaced by K . Constraint (9)
becomes

X (jw )

e o > 2 ‘

e | =z Gu )] (13)

because A 1is constant. For the same reason (10) becomes

Ii(.‘i('w)l < L Vg (1)
A J aw ? o °

The above is illustrated by a numerical example.
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SOAL Design Example.

The plant and specifications are the same as in the
SOAS example, except that m there of 1 is decreased here

to .01. In this way,

I K
r . = 2 max |. .
IAe(jwo)I (SOAL) = — X IAe(jwo)l (s0As)

m 2
new o0ld "min

giving again w_ . = 4.5 [If m = .01 is used in the

SOAS, the resulting w = 14 rps, and it is possible

o min

that over part of this range’ IZde(jw)I > IZPe(jw)l » SO

even larger Wy would be necessaryl]. The bounds on

min

Lf(jw) to obtain the specified disturbance attenuation

are the same as in the SOAS so precisely the same Lf(s) S

G3(s) 5 BGQ(S) 5 Gi(s) result. In the SOAS, Amin = .57
here fixed. If B = 167 is used at xmin‘zzl , then

B = .16 at Km 100 . Only ¥(s) remain to be chosen.

ax

Choice of Y(s) = 0.4/s gives very simple secondary loop
dynamics, because at K = 100 , A= .,5, B = 16m ,

Lo~ « & e 7 (ignoring (Lg/®/[1#(Lc/3)] which is

close to 1 over [0,.4] , .4rps being the crossover

~(7s

frequency w, of Ls(jw) . The time delay e gives

16° phaselag at w, . If this too is ignored,

AB U
AK ¥ s¥.0
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Design Verification. The system was simulated on the

CDC 6400 at University of Colorado, using MIMIC. Results
are shown in Figs. Sa-c for abrupt gain changes in K . In
(a), the time required for B to reach 95% of its final
value is 9.8 seconds. If K = 100 is used in the previous
simple first order approximation of Ly then three time
constants plus a half-period predict 8.2 seconds, whereas
use of K = 50 predicts 15.7 sec. It is Heen that the
speed of adjustment significantly decreases, as predicted,
at the smaller K values. The invariance of the system
step response for various K is seen in Figs. 6a-b; also

that (2a) is very well satisfied.

Comparison with other Two-Loop Self-Oscillating Adaptive

Systems.

One significant distinction of the SOAL is its retention
of the nonlinear element N of the SOAS, with use of the
second loop to modify its parameter. In some other two-loop
systems [13, 18, 19, 211, N is eliminated and a gain
changer is used in its place. Another crucial difference is
the point at which A of Asinw,t is measured. In the
SOAL, it is measured at the point where it has the greatest
immnunity to forced signal components, because the design
guarantees that at x 1in Figs. 1, 4 the forced components
are slow and small realtive to Wy and A . Peak to peak

detection becomes possible which further increases the

immunity. In the others [18-22], A is measured closer
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to the plant input or output, where the forced components

are much stronger. A bandpass filter becomes necessary with

its additional significant time lag over and above that

needed to measure A . Disturbance components can conceivably
be misinterpreted as plant gain changes with possibly disastrous
results. If the pass-band of the filter is narrowed to
decrease the latter possibility, the greater is the danger

if w, wanders out of the pass-band and the greater is the

time lag of the filter.

General Plant Uncertainty.

In the above, only uncertainty in the plant gain factor
K of P = KPh was considered, in order to emphasize the
fundamental SO0AS and SOAL properties. In the general
uncertainty case Ls has adaptive obligations, which it
does not have for K variations only and no disturbances.
~These obligations in a quantitative design can be put in the

form of bounds on L.(jw) , just like those in Fig. 3 for
; £ % &

the disturbance attenuation obligations of Le .

Reference [25] has treated in detail the general
uncertainty problem for the SOAS and it was found that
some iteration may be theoretically necessary, but rarely
in practice because W, is relatively so large that
lLf(jw)l is significant over a relatively large ®w range.
The treatment for the SOAL is precisely the same and there-

fore need not be repeated here. However, in the design
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execution, the iteration is much more likely to be necessary,

especially in the case of large uncertainty in plant dynamics.

The reason is that Wy is much smaller in the SOAIL, than in
the SOAS , so one does not have so much extra Lf bandwidth.
The bounas on Lf(jm) due to the uncertainty in P, may

be such that w,  needed (at which Le = -0.5) for this
purpose, is larger than Wy min oﬁtained from cohstraints
(13, 14). It is obviously easy to manufacture such problem
specifications. In any case, the procedure is identical to

that presented [25] for the SOAS.

IV. NONLINEAR SECONDARY LOOP SOANL

The logical next step for improving the adaptive system
is to try to eliminate the sensitivity of the SOAL secondary
loop LS to the plant gain K . This can be done, in the
steady-state, by means of a multiplier in the secondary loop
whose multiplication factor is inversely proportional to KX .
Since K 1is not directly available, B which is inversely
related to K 1is used, as shown in Fig. 7, which shows only
the secondary loop, as the primary loop is identical to that
in Figs. 1, 4a. The 'fundamental feedback equation' is
again used to find the dynamics of the new Lo - As the loop
is nonlinear, such a linear time invariant description,
valid only for small perturbations about an operating point,
is a function of the operating point. The easicst one is
when the secondary loop is initially quiescent i.e.

Ar = A, so there is no multiplier output.
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Let ,6 and /8 be as shown in Fig. 7. Let J be
AK , a change in the plant gain, and €@ = AB . Make

cuts at a , a' . Then t.. = 0 due to the cuts and t__=1
0s oi os

To find tc. = , note that AAm (recall similar

a_
i AK
calculation in the SOAL)

: L./3
_ 4B(AK) 3 f
- n IG2PhG1(J("’o)| Ame 1+Lf73 2

This is multiplied by —B/Bm. » giving a result proportional

in
2

to B° . To find tsc » let a' be an independent input

- ? = a' A
and find a/a' . B becomes R giving
! L3
_ 4a' 5 f
aB, = = |6, 6 (ju ¥} K& i e e

- . S N : 4 i
which is multiplied by Bnew/BRin . For incremental a' ,
 drngd :
the result is @ t SRR gt » and L, ==y (s)ts

sc B_. a c

is the SOANL secondary loop transmission. .In the steady
state the above calculated AB/AK(s) gives AB/AK = -B/K ,
just as in the SOAL . The important difference is that L;
contains BK (cf K in (12) for the S0AL), which is
invariant in the steady—staté. Hence, the SCANL should

deliver for all K € [Kmin s Kmax]’ the fast adjustment to

K variations, which the SOAL can do only near Kmax
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SOANL Design Example

The synthesis procedure, specifications etc are the
same as for the SOAL. Hence, the results for G, , G,, B
etc are precisely the same. Simulation results are shown
in Fig. 8. The analysis made was for small KX changes,
and would be éxpected to be valid for large changes if these
were somewhat slower than the secondary loop dynamics.
Nevertheless, the same basisc results hold even for very
large and abrupt changes in the plant gain K , as seen in

Fig. 8.

V. CONCLUSIONS

The development of a quantitative design theory for the
single loop self-oscillating adaptive system (SOAS) has 1led
in a natural, logical manner to the two-loop system (SOAL) with
important superior features. The emphasis on quantitative
design reveals also the superiority of the SOAL over other

such two-loop structures. It is interesting that the gain
was :

factor uncertainty K _ /K whichpinherently banished as

max’ min

an adaptive problém by the oscillation, returns in the
SOAS. in the quasilinéavity constraints. It plays there an

important role in forcing an unnecessarily large Yo min

It is banished in the SOAE’permlttlng a much smaller Yo min °

but reappears in the secondary loop dynamics. This results
in the speed of adjustment to K variations being a function

than at K « d¢ 18

of K and much slower at K . -
min max
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banished from the SOAL by means of nonlinear compensation
in the secondary loop, giving the SOANL. It
undoubtedly reappears in a subtle manner in a nonlinear
analysis of the SOANL » but if so, it does not appear to

be a critical one. Exactly the same two-loop extensions

can be made to the externally excited adaptive (EEAS)
% EEAL and
system [26], giving muitiple 1oopAFEANL_which therefore do not

require separate treatment.
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